Hetkel kõige aktuaalsemad küsimused
Planeering ja asukohavalik
NB! Riigi eriplaneeringu kohta saab põhjalikumat infot fermi.ee/REP
Ei, kuid riik on algatanud sobiva asukoha leidmiseks ja detailse lahenduse koostamiseks eriplaneeringu. Riik loob ka tuumaenergia kasutuselevõtuks vajalikku seadusandlust ja valmistab ette regulaatori loomist. Igale otsusele eelneb põhjalik eeltöö. Jaama ehitamise otsuse saab arendaja teha alles pärast riigilt ehitusloa saamist.
12.06.2024 Riigikogu võttis vastu otsuse tuumaenergia Eestis kasutuselevõtu toetamise kohta.
Ei. Jaamale sobiva asukoha leidmiseks on riik algatanud eriplaneeringu, mis jõuab asukohavalikuni ca 2027 ning seejärel pärast põhjalikumaid uuringuid saab asukoha kinnitada ca 2029.
Loe tuumajaama eriplaneeringust lähemalt Majandus- ja Kommunikatsiooniministeeriumi planeeringute kodulehel.
Ei, Fermi Energia on planeeringus sõltumatu osapool – planeeringu viib läbi riik vastavalt kehtivatele Eesti ja rahvusvahelistele nõuetele ning arendajal asukoha osas valikuõigust pole.
Asukoha valib riik Planeerimisseaduse ja IAEA juhendite põhjal.
Tuumajaamale asukohta valides peab asukohakandidaate hindama nii tervise, ohutuse, turvalisuse, ehitatavuse, sotsiaalmajanduslike ja keskkonnamõjude aspektist.
Täpsema ülevaate asukohavaliku kriteeriumitest leiab Rahvusvahelise Aatomienergia Agentuuri kodulehelt.
Mõju keskkonnale
Jahutuseks kasutatav vesi võetakse merest, mitte põhjaveest. Vesi läheb jaamast merre tagasi ca 10 kraadi soojemana ning see on ka tuumajaama peamine keskkonnamõju. Kõiki keskkonnamõjusid hindavad riiklikud järelevalveametid põhjalikult nii enne ehitus- ja tegevuslubade andmist kui ka opereerimise käigus. Merre lastav jahutusvesi vastab rangetele tervise- ja keskkonnakaitse nõuetele. Merre lastav jahutusvesi ei ole inimesele ohtlik.
Ei. Kiirgus jaama ümbruses on sama kui tavaline looduslik taustkiirgus.
Jaama ümber olulisi piiranguid või evakuatsioonitsoone vaja pole, kuna plaanitavates reaktorites kasutatakse vähem tuumkütust ja tõhusamaid ohutusmeetmeid, kui n.ö traditsioonilistes tuumajaamades. Ka õnnetuse korral jääks kiirgusfoon jaama territooriumist väljaspool inimesele ohutu normi piiresse. Lõpliku otsuse hädaolukorra planeerimistsooni suuruse ja piirmäärade kohta teeb riiklik regulaator.
Mõju piirkonnale
Rahvusvaheline kogemus näitab, et mitte. Arendaja on teinud ettepaneku sätestada seadusega, et tuumaenergia tootmise eest maksab arendaja kohalikule omavalitsusele ja majapidamistele tootmistasu, nagu see on täna tuuleenergia tootmise puhul. Sellise tasu rakendumisel tekib majapidamistele tulu, mis võib kinnisvara hind pigem tõsta.
Uuringu tuumajaama kohalike sotsiaalmajanduslike mõjude kohta tegi Cumulus 2021. aastal.
Tuumajaama piirkonnas inimeste liikumisele väljaspool jaama territooriumi olulisi piiranguid ei ole. Lõplikud detailid (näiteks droonide lennukeelutsoon) selguvad planeeringu käigus, mille sisendiks on ka kohalike elanike soovitused.
Tuumajaam elavdab piirkonna majandust. Lisanduvad nii otsesed kui kaudsed töökohad, investeeringud taristusse, tellimused kohalikele ettevõtetele. Jaama juurde rajatav külastuskeskus toob piirkonda turiste. Arendaja on teinud ettepaneku sätestada seadusega, et tuumaenergia tootmise eest maksab arendaja kohalikule omavalitsusele ja majapidamistele tootmistasu, nagu see on täna tuuleenergia tootmise puhul.
Mõju ehitustegevuse ajal
Võimalusel kasutatakse juba olemasolevaid teid ja sildu, mida vajadusel tugevdatakse. Riigi eriplaneeringu käigus analüüsitakse lisanduvat liikluskoormust nii ehituse kui opereerimise perioodil. Täpsem lahendus selgub planeeringu käigus ning arvesse võetakse ka kohalike elanike soovitusi. Vajadusel rakendatakse leevendavaid meetmeid.
Tuumajaama liitmiseks elektri põhivõrku on vajalikud 330 kV ja 110 kV elektriliinid. Võimalusel kasutatakse olemasolevaid trassikoridore. Täpne lahendus selgub planeeringu käigus, pärast jaama asukoha valimist.
![]()
Eleringi olemasoleva põhivõrgu kaardiga saad tutvuda gis.elering.ee.
Tänase teadmise kohaselt saab tuumajaam liituda olemasoleva põhivõrguga kas Püssi või Rakvere alajaama kaudu. Sõltuvalt palneeringu käigus selguvast asukohast võib tekkida vajadus hinnata täiendava alajaama ehitust tuumajaama lähedale. Liitumistingimused annab Elering.
Võimalusel kasutatakse suur osa kohapeal. Ülejäänu suunatakse sobivatesse ladustusaladesse või taaskasutusse.
Ehitusplatsi ettevalistus kestab 1-2 aastat ning ühe reaktori ehitus hinnanguliselt 3–4 aastat. Paljud põhikomponendid tuuakse kohale valmiskujul ja monteeritakse moodulitena. Eesti jaama ajakava planeerimisel võetakse eeskujuks Kanada Darlingtoni BWRX-300 esmaehitus.
Vaata esimese BWRX ehitust GE Vernova kodulehelt
Muud küsimused
Radioaktiivsete jäätmete käitlemist rahastatakse spetsiaalsest fondist, kuhu iga toodetud elektrienergia ühiku eest jaama käitaja sissemakseid teeb. Radioaktiivseid jäätmeid (seal hulgas kasutatud tuumkütus) käideldakse ja hoiustatakse esmalt jaama territooriumil asuvates vahehoidlates ja hiljem ladustatakse lõpphoidlates, mille rajamiseks algatatakse eraldi planeeringud. Hetkel kehtiva radioaktiivsete jäätmete käitlemise riikliku kava alusel korraldab radioaktiivsete jäätmete lõppladustamist Kliimaministeerium.
Vaata fermi.ee/jaatmekaitlus.
Jah. Tuumajaam toodab kindlat, soodsat ja puhast energiat iga ilmaga. See aitab langetada elektri hinda tarbijatele, leevendab sõltuvust elektri impordist ja vähendab kallist tasakaalustamisvajadust.
Ei. BWRX-300 on oma olemuselt väiksema mahuga keevaveereaktor – sama tööpõhimõttega reaktoreid on ohutult ja edukalt kasutatud aastakümneid. Esimene BWRX-300 reaktoriga tuumaelektrijaam on ehituses Kanadas. Sama reaktori ehitus on plaanis ka USAs ja Poolas.
Veel küsimusi ja vastuseid
Nuclear energy is a new topic for many people and raises a variety of questions, which reach us via the website, email and in many other ways. We will try to answer these questions and publish the answers here.
Sageli arvatakse, et tuumaenergia ja SMR-ide LCOE (levelized cost of energy) on meretuule, tuule- ja päikeseenergia ning salvestuse kombinatsioonist oluliselt kallim. Viidatakse Lazardi, Rahvusvahelise Energiaagentuuri ja teadusasutuste analüüsidele ning tuuakse välja, et väiksed reaktorid kaotavad mastaabisäästu ja seetõttu on kallimad. Samuti märgitakse, et SMR-e ei toodeta veel masstoodanguna ning esimesed jaamad saavad riigilt toetusi.
Tegelikkuses on LCOE kasulik vaid elektritootja vaates, mitte kogu ühiskonna seisukohalt. LCOE ei arvesta turu vajadust – selle metoodika jaoks pole vahet, kas elektrit toodetakse öösel kell 2 või tiputarbimise ajal kell 19. Seetõttu ei kajastu mudelis taastuvenergia katkendlikkus ega vajadus lisada süsteemi samaväärne kogus juhitavat võimsust, mis on sageli gaasijaamad. Nende jaamade tööshoidmise kulud, sh gaasi hind, ei kuulu LCOE raamistikku, kuid on süsteemi jaoks vältimatud. Samuti ei arvesta LCOE tootmiste eluea erinevusi: tuule- ja päikesepark kestavad 20–30 aastat, tuumajaamad 60–80 aastat.
Oluline on ka see, et nii väikeste kui suurte tuumajaamade komponente toodavad samad tehased, näiteks BWXT Ameerikas ja Hitachi-GE Japan.
Sageli väidetakse, et Põhjamaade madalad elektrihinnad tulenevad peamiselt hüdroenergiast ning tuumaenergia on konkurentsivõimeline ainult teatud juhtudel, eriti mitte Euroopas ega ilma toetusteta.
See arvamus peab paika vaid osaliselt. Tõsi on, et soodsaimate hindadega Soomes ja Rootsis on palju hüdroenergiat, kuid neis on tavaliselt ka märkimisväärne kogus tuumaenergiat. Ainuüksi taastuvate energiaallikate suur osakaal ei taga madalat hinda. Oluline on (süsinikuvaba) tootmise stabiilsus ja juhitavus – mida hüdro ja tuumaenergia suudavad pakkuda, kuid tuul ja päike mitte.
Eestis pole hüdroenergia potentsiaali peaaegu üldse, mis tähendab, et seda mudelit kopeerida ei saa. Samal ajal on taastuvenergia kõikjal Euroopas tugevalt subsideeritud – tarbijad maksavad selle tegeliku hinna kinni maksude kaudu, mitte ainult elektriarvel.
Soome ja Rootsi, kus tuumaenergia moodustab vastavalt üle 40% ja umbes 30% tarbimisest, on Põhjamaadest ühed madalamate elektrihindadega riigid. Tuumaenergia on seal elektrisüsteemi oluline ja stabiliseeriv osa.
Seda kahtlust põhjendatakse sageli sellega, et tuumaenergia LCOE olevat taastuvenergiaga võrreldes oluliselt kõrgem, mistõttu jaam ei püsiks ilma riigi toetuseta konkurentsis. Samuti väidetakse, et riigile tekivad suured lisakulud tuumataristu loomiseks ning et tulevikus täidavad Eesti energiavajaduse täielikult taastuvenergia ja salvestus, mistõttu pole tuumajaama tarvis ega oleks sellele turul ruumi. Seetõttu olevat arendajatel riigi garantiideta keeruline kapitali kaasata.
Tegelikkuses ei pea see arvamus paika mitmel põhjusel.
Esiteks, LCOE meetodi piiranguid on juba ülal selgitatud – see ei arvesta süsteemi vajadusi, varustuskindlust, juhitavust, elukaare pikkust ega taastuvenergia vajalikke lisakulusid.
Teiseks ei ole riigi vaade ainult kulud: tuumaenergia ettevalmistusperioodil (aastad 0–11) toob TET-aruande hinnangul riigile rohkem tulu kui kulu.
Kulud: –72,9 M€
Tulud: +163,5 M€ (tulud ületavad kulusid alates 4. aastast, püsivalt alates 6. aastast)
Total: +90,6 M€ riigi kasuks
See tähendab, et riigil tekivad tuumaenergia arendamisel ka otsesed tulud, mitte ainult kulud.
Kolmandaks on globaalne pilt subsiidiumidest vastupidine väitele: taastuvenergia saab kordades rohkem toetusi kui tuumaenergia.
Näiteks Euroopa Liidus 2021. aastal:
Tuumenergia subsiidiumid: ~5 miljardit eurot
Taastuvenergia subsiidiumid: ~85 miljardit eurot

Seega ei ole tuumaenergia sõltuvus toetustest suurem kui teistel tehnoloogiatel – pigem vastupidi. Lisaks ei tähenda taastuvenergia ja salvestuse lisandumine, et juhitavat tootmist enam vaja poleks; tarbimine, varustuskindlus ja süsteemi stabiilsus eeldavad jätkuvalt ka ööpäevaringset tootmisvõimsust.

Jah. Eesti ei ehita esimest omataolist reaktoritüüpi — BWRX-300 tehnoloogia ehitatakse enne valmis Canada, kust saadakse kogu vajalik ehitus- ja käituskogemus. Reaktor põhineb juba kasutuses oleval ja hästi tuntud keevaveereaktori tehnoloogial ning enamik selle komponente on eelnevalt litsentseeritud, mis muudab ajakava oluliselt usaldusväärsemaks.
Soome on hea näide riigist, kus mõlemat tehnoloogiat arendatakse paralleelselt — tuumaenergia toetab süsteemi stabiilsust ja võimaldab taastuvenergia osakaalu kasvatada, kui see on soovitud ja vastuvõetav riigile ja kogukondadele. Tuumaenergia kasutuselevõtu peamine eesmärk on fossiilkütustest sõltuvuse vähendamine, mida ainult taastuvenergiaga, sh. ka salvestust kasutades, mõistlikus eelarves, ajaraamis ja ühiskonnale vastuvõetavate mõjudega saavutada on ebarealistlik.
Varustuskindlust ei saa kavandada parima võimaliku, vaid halvima võimaliku stsenaariumi järgi — olukorraks, kus välisühendused ei tööta. Ka Elering on selgesõnaliselt kinnitanud, et Eesti vajab sellises olukorras vähemalt 1000 MW kindlat juhitavat tootmisvõimsust.
Põlevkivienergiast selle kalliduse ja keskkonnamõjude tõttu väljumisel peab see võimsus tulema teistest stabiilsetest allikatest. Salvestus, tarbimise juhtimine ja kiirelt juhitavad jaamad on vajalikud, kuid need ei asenda ilmast sõltumatut ja mahukat tootmist. Tuumaenergia pakub just seda püsivat baasvõimsust, mida süsteemi turvalisus eeldab.
Questions from the website and by email
Asked by Argo
Estonia needs carbon-neutral, weather-independent, year-round, managed energy production to ensure security of supply and stable, reasonable electricity prices for consumers. There is certainly a need to develop other forms of energy production and storage, but it is clear that today's, and tomorrow's, wind and far from solar power generation capacity, even with the planned pumped hydro power plant, will not be sufficient to meet the consumption load in all weathers. The limited lifetime of wind turbines (20-25 years) and the fact that we are directly linked to the Baltic electricity system must also be taken into account.
To ensure that electricity is available in all weathers and all seasons, there are two options - either produce it yourself, or hope to buy it from neighbouring countries. Domestic energy production, independent of the weather and neighbours, is as important to the country as domestic agriculture and national defence. Given, for example, Finland's own rapid growth in electricity consumption (projected at 125 TWh by 2033, 47 TWh more than in 2023), but at the same time the decline in firm generation capacity (coal power plant closures) and the increasing share of weather-dependent unregulated capacity, it is difficult to prove that Finland can also ensure security of supply for Estonia and the Baltic States in the winter with wind. through Estlink 1, 2 or 3. The beginning of 2024 shows that Finland itself will be short of firm generation capacity (2.6 GW in imports) in the event of a cold winter and daily wind and will probably not be able to contribute to security of supply in Estonia and the Baltics. Firm generation capacity in Estonia is a more effective guarantee of security of supply than external interconnections, which are demonstrably vulnerable.
The output of a nuclear power plant will also help to bring down the market price of electricity, as it pushes more expensive fossil-fuel power plants out of the market. As nuclear power generation is not dependent on weather conditions and guarantees continuous electricity production 24/7 at full capacity, market price volatility (price fluctuations over a given period) is reduced. This will also benefit consumers who opt for an exchange package. In addition, predictable and affordable electricity will give our industry a competitive edge in world export markets and will encourage the creation of new businesses and jobs in Estonia.
On 30 December 2023, the Working Group on Nuclear Energy of the Government of the Republic published its Final report, which concludes that the deployment of nuclear energy in Estonia is feasible and would contribute to both security of supply and climate objectives. A conscious decision on whether or not to go nuclear will be taken by the Riigikogu later this year.
Asked Märt
Every human activity has an impact on its surroundings, and this is also true for nuclear power plants. A nuclear power plant does not produce carbon dioxide or other greenhouse gases during its operation. Neither does it emit any stench, smoke or fine particles, as can be the case with shale oil plants. The main environmental impact is the heated cooling water, which is taken from a body of water and returned to the environment about 10 degrees warmer in the case of direct cooling. It is important to emphasise that neither the cooling water nor the steam is in any way radioactive or otherwise harmful to the environment or health.
The heat generated by the plant can be used for district heating as well as to boost agriculture and fish farming, for example. For example, in Finland, there is a test field for growing grapes at the Olkiluoto nuclear power plant, and in the future, the world's northernmost vineyard could be considered. Despite the fact that waste heat is used for a variety of purposes, the cooling water that reaches the water body is warmer than the natural background and is completely clean and non-radioactive. Mitigating measures are also foreseen to avoid environmental impacts: the water body must be large enough and the cooling water will be discharged very far and deep to avoid excessive impact on aquatic life.
Loe pikemalt: Nuclear power plant water use
When a nuclear power plant is cooled with seawater, the cold water is collected from the sea, half of it evaporates in the cooling towers and returns to the atmosphere as clean steam, the other half condenses and returns to the sea as clean water. As already mentioned, the water returned to the sea is in no way radioactive and is 10 degrees above ambient temperature.
When water is drawn from a closed water body to cool a nuclear power plant, half of the water evaporates in the cooling towers and returns to the atmosphere as clean steam, the other half condenses and returns as clean water to the closed water body from which it was pumped. Cooling with water from the closed reservoir involves the construction of special modern cooling towers using fans in addition to water. The need for water in this case is kept to a minimum and is only needed to cover the evaporated part. In a closed cooling system, the hot water does not flow directly back into the water body, but circulates in a closed cycle in the cooling tower. In this case, the water body is only affected by the direct water intake and the 6 to 10 degrees Celsius higher temperature of the small amount of water that is returned.
A thorough assessment of the medium-term impacts and an analysis of the impact and availability of cooling water will be carried out as part of the national specific planning process. The relevant construction and operating licences will only be granted if it has been demonstrated through detailed studies that the construction and operation of the plant and the geological disposal of the waste will not affect groundwater in such a way as to pose a risk to the environment, the quality of human drinking water or its availability.
Asked by Sirje
Nuclear power plants are usually fuelled by uranium, more specifically by pellets pressed from uranium dioxide, which are placed in special fuel bins. For the Estonian plant, the plan is to buy uranium from Canada and enrichment services from some EU countries.
Read more about nuclear fuel modulereaktor.ee and From the article on the Geenius portal.
Deep Isolation seems to be a simple and cost-effective method for burying small diameter stems. But what will be done with the reactor when its lifetime is over? Will it also be buried, how will it be dismantled in a way that does not pose a risk to workers and the surrounding environment, and where will the material that was exposed to radiation inside the reactor (which may itself have become radioactive in the meantime) be disposed of?
Asked by Andrus
Final dismantling of the plant will start after the plant has been completed. All parts of the station (including concrete walls, etc.) are qualified, i.e. their activity is assessed. The plant will be dismantled and the dismantled parts of the plant will be disposed of in different repositories according to their activity.
The final dismantling and disposal activities of the plant will be covered by the reserve collected in the national waste fund during the operation of the plant. The costs of the final storage of waste and the dismantling of the plant are included in the price of the electricity produced by the plant.
You can find out more about the waste management at the nuclear power plant fermi.ee/jaatmekaitlus
Ohutus ja ohtude mõistmine
Threats can only be successfully avoided if we understand their nature and act accordingly. There are many myths associated with nuclear energy and radioactivity, which create ignorant panic and misguided behaviour, and thus pose an even greater threat than originally feared.
When talking about the dangers of nuclear power plants, it is important to bear in mind that not every radiation source is dangerous to humans or the environment (as long as we consider the natural background radiation that surrounds us every day to be safe anyway). To put it very simply, only radioactive radiation is dangerous to humans if they are very close to the source, or a little further away but for a longer period of time. For this reason, accidents at nuclear power plants also vary greatly in their degree of danger - a reactor failure may not always be dangerous if the radiation does not penetrate the containment or if a small amount of a short-lived radioactive isotope mixes and disperses in seawater. However, there is a serious problem if long-lived radioactive elements are transported over a large area or if radiation levels rise above limits where they should not.
Indirect risks must also be taken into account - for example, in the case of the Fukushima accident, the main risk to human life was not the radiation dose but the problems and stress caused by evacuation.
Yes, but it is important to understand that anything can be dangerous if used incorrectly or if safety rules are not followed. The safety rules for nuclear power plants are very thorough and, for example, in Europe, where the general safety culture is very high, there has never been a single fatal accident in the entire history of nuclear power, unlike all other forms of electricity generation. Estonia must base its regulatory development on the standards of the International Nuclear Energy Agency and the EU directives. It is also sensible to build only a type of reactor in Estonia that has already been successfully licensed elsewhere and is producing electricity. These factors provide the assurance that Estonian nuclear power plants will be built and operated safely, as has been the case for over forty years with nuclear power plants in Finland, Sweden, Belgium, the Netherlands and elsewhere in Europe. Nuclear energy is proven safest energy source.
The effect of radiation on an organism is best described by the equivalent dose, which is measured in Sv. When measuring the effective dose received by the whole human body, the time spent exposed to radiation must also be taken into account.
For example, the normal range for natural background radiation is considered to be 2.4 millisieverts per year (mSv/y) on average. About half of this dose (1.26 mSv/y) is from inhaled air, 0.29 mSv/y from food, 0.48 mSv/y from the ground and 0.39 mSv/y from cosmic radiation. If we add to this the calculated average dose from X-rays, CT scans (the main source of anthropogenic radiation is medicine, with an average of 0.6 mSv/a), nuclear accidents and nuclear testing, the total average dose to the average person is 3.01 mSv/a. Converted into hours, this is 0.00034 mSv/h or 0.34 micro-sievert per hour (μSv/h).
The radiation levels around us vary greatly from region to region - for example, in Brazil, the popular Guarapar beach has 90 μSv/h (micro-sievert per hour), while next to the Chernobyl nuclear reactor sarcophagus it is 90 μSv/h (micro-sievert per hour). more than 100 times lower - 0.81 μSv/h. In comparison, the average natural radiation flux in Finland is 0.09 μSv/h, in Estonia 0.08 μSv/h. In an aeroplane flying at an altitude of 10 km, the radiation background is about 5 μSv/hour.
Thus, a background radiation dose of about 0.1-1 μSv/h at ground level, plus radiation doses from air travel, medical research and other human activities, up to 10 μSv/h in the short term, can be considered normal.
Certain medical devices can deliver higher doses of radiation in a short time - for example, a single CT scan can give a person a dose of 10-30 mSv, or an accumulated dose of 80 mSv over 6 months in an international space station.
However, the doses that pose a health risk are significantly higher and depend largely on the duration of exposure. For example, the minimum dose that has been shown to increase the likelihood of cancer is 100 mSv/y, or 100 000 μSv/y, but in radiotherapy, for example, very localised doses exceeding 2000 mSv, or 2 000 000 μSv/y, are used to treat cancer. If a person were to spend hours exposed to such radiation, death would be very likely.
Thus, nuclear materials pose a health risk, especially when they are in close proximity for long periods of time.
Ei. Tuumarelvas peab olema U-235 rikastusaste üle 80%, et tuumade lõhustumise ahelreaktsioon saaks olla plahvatuseks piisava kiirusega. Elektrijaama tuumkütuses on rikastusaste about 4-5% or 20 times lower.
No. The Chernobyl RBMK reactor was dangerous because of a design flaw and blatant violations of operating rules. In addition, the RBMK (in its configuration at the time) was also uniquely capable of such a sequence of steam and hydrogen explosions, such a graphite burn-up, and such a very large release of radioactive material. All reactors developed in the West have an explosion-proof pressure vessel, a containment and do not have a positive reactivity coefficient or detonating shutdown rods as was the case with the RBMK reactor type. Also, no Western reactor contains such a large quantity of fuel or graphite with water, which at extremely high temperatures would turn into hydrogen and explode in the reactor core.
The worst possible accident involving a water reactor occurred in the wake of the Tokuhu earthquake and tsunami at Fukushima Daichi (the first), where no one received a life-threatening dose of radiation. To date, residents have been allowed to return to live in all settlements in the evacuation zone of the Fukushima plant (local radiation information is available from the from here). It is worth noting that the shutdown of the second (Daini) multi-reactor plant in Fukushima and the closest (Onagawa) plant to the earthquake went smoothly.
The Fukushima accident is unfortunate, but it is rather a good example of the safety of nuclear power, because 15 000 to 20 000 people died in the earthquake and tsunami, but none died from radioactivity.
In a nuclear power plant, the nuclear fuel (the only truly dangerous material) is contained inside the reactor, usually in a water vessel, because water is relatively effective at blocking not only alpha and beta radiation but also gamma radiation (gamma radiation loses 50% of its energy after passing through 15 cm of water). (The water itself does not become radioactive, but heats up and flows through a heat exchanger, giving off a large amount of heat.) The water itself does not become radioactive, but heats up and flows through a heat exchanger, giving off a large amount of heat. This heat, in turn, heats the water in the other tank, which evaporates and drives the steam to power the turbine.) In addition to the thick layer of water, the thick reactor shell also prevents the radiation from spreading. Outside this, the radiation level is safe enough for humans. The design of the reactor building and the atmospheric air further reduce the energy of the radiation, and the radiation level outside the plant fence is comparable to the natural background.
Choosing the right location for a nuclear plant is the most important factor in protecting the environment. Estonia's northern coast is ideal for this, as it has a thick layer of waterproof blue clay, several tens of metres thick, close to the surface and therefore geologically avoids the risk of groundwater pollution.